skip to main content


Search for: All records

Creators/Authors contains: "Herrera-Camus, Rodrigo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe.

     
    more » « less
  2. Abstract

    M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.

     
    more » « less
  3. Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 − 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of H α to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [C ii ] emission with respect to the total infrared luminosity. 
    more » « less
  4. ABSTRACT

    We present a method to characterize star-formation driven outflows from edge-on galaxies and apply this method to the metal-poor starburst galaxy, Mrk 1486. Our method uses the distribution of emission line flux (from H β and [O iii] 5007) to identify the location of the outflow and measure the extent above the disc, the opening angle, and the transverse kinematics. We show that this simple technique recovers a similar distribution of the outflow without requiring complex modelling of line-splitting or multi-Gaussian components, and is therefore applicable to lower spectral resolution data. In Mrk 1486 we observe an asymmetric outflow in both the location of the peak flux and total flux from each lobe. We estimate an opening angle of 17–37° depending on the method and assumptions adopted. Within the minor axis outflows, we estimate a total mass outflow rate of ∼2.5 M⊙ yr−1, which corresponds to a mass loading factor of η = 0.7. We observe a non-negligible amount of flux from ionized gas outflowing along the edge of the disc (perpendicular to the biconical components), with a mass outflow rate ∼0.9 M⊙ yr−1. Our results are intended to demonstrate a method that can be applied to high-throughput low spectral resolution observations, such as narrow-band filters or low spectral resolution integral field spectrographs that may be more able to recover the faint emission from outflows.

     
    more » « less
  5. Abstract

    We compare 500 pc scale, resolved observations of ionized and molecular gas for thez∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux (Σ̇out) and star formation rate surface density (ΣSFR),Σ̇outΣSFR1.06±0.10, and a strong correlation betweenΣ̇outand the gas depletion time, such thatΣ̇outtdep1.1±0.06. Moreover, we find these outflows are so-calledbreakoutoutflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies.

     
    more » « less
  6. ABSTRACT

    We study star formation-driven outflows in a z ∼ 0.02 starbursting disc galaxy, IRAS08339+6517, using spatially resolved measurements from the Keck Cosmic Web Imager (KCWI). We develop a new method incorporating a multistep process to determine whether an outflow should be fit in each spaxel, and then subsequently decompose the emission line into multiple components. We detect outflows ranging in velocity, vout, from 100 to 600 km s−1 across a range of star formation rate surface densities, ΣSFR, from ∼0.01 to 10 M⊙ yr−1 kpc−2 in resolution elements of a few hundred parsec. Outflows are detected in ∼100 per cent of all spaxels within the half-light radius, and ∼70 per cent within r90, suggestive of a high covering fraction for this starbursting disc galaxy. Around 2/3 of the total outflowing mass originates from the star forming ring, which corresponds to ${\lt}10{{\ \rm per\ cent}}$ of the total area of the galaxy. We find that the relationship between vout and the ΣSFR, as well as between the mass loading factor, η, and the ΣSFR, are consistent with trends expected from energy-driven feedback models. We study the resolution effects on this relationship and find stronger correlations above a re-binned size-scale of ∼500 pc. Conversely, we do not find statistically significant consistency with the prediction from momentum-driven winds.

     
    more » « less
  7. null (Ed.)