Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The gas-phase velocity dispersions in disk galaxies, which trace turbulence in the interstellar medium, are observed to increase with lookback time. However, the mechanisms that set this rise in turbulence are observationally poorly constrained. To address this, we combine kiloparsec-scale Atacama Large Millimeter/submillimeter Array observations of CO(3−2) and CO(4−3) with Hubble Space Telescope observations of Hαto characterize the molecular gas and star formation properties of seven local analogs of main-sequence galaxies atz∼ 1–2, drawn from the DYNAMO sample. Investigating the “molecular gas main sequence” on kiloparsec scales, we find that galaxies in our sample are more gas-rich than local star-forming galaxies at all disk positions. We measure beam-smearing-corrected molecular gas velocity dispersions and relate them to the molecular gas and star formation rate surface densities. Despite being relatively nearby (z∼ 0.1), DYNAMO galaxies exhibit high velocity dispersions and gas and star formation rate surface densities throughout their disks, when compared to local star-forming samples. Comparing these measurements to predictions from star formation theory, we find very good agreements with the latest feedback-regulated star formation models. However, we find that theories that combine dissipation of gravitational energy from radial gas transport with feedback overestimate the observed molecular gas velocity dispersions.more » « less
- 
            ABSTRACT In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure.more » « less
- 
            Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 − 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of H α to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [C ii ] emission with respect to the total infrared luminosity.more » « less
- 
            ABSTRACT We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe.more » « less
- 
            ABSTRACT We present a method to characterize star-formation driven outflows from edge-on galaxies and apply this method to the metal-poor starburst galaxy, Mrk 1486. Our method uses the distribution of emission line flux (from H β and [O iii] 5007) to identify the location of the outflow and measure the extent above the disc, the opening angle, and the transverse kinematics. We show that this simple technique recovers a similar distribution of the outflow without requiring complex modelling of line-splitting or multi-Gaussian components, and is therefore applicable to lower spectral resolution data. In Mrk 1486 we observe an asymmetric outflow in both the location of the peak flux and total flux from each lobe. We estimate an opening angle of 17–37° depending on the method and assumptions adopted. Within the minor axis outflows, we estimate a total mass outflow rate of ∼2.5 M⊙ yr−1, which corresponds to a mass loading factor of η = 0.7. We observe a non-negligible amount of flux from ionized gas outflowing along the edge of the disc (perpendicular to the biconical components), with a mass outflow rate ∼0.9 M⊙ yr−1. Our results are intended to demonstrate a method that can be applied to high-throughput low spectral resolution observations, such as narrow-band filters or low spectral resolution integral field spectrographs that may be more able to recover the faint emission from outflows.more » « less
- 
            Abstract M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.more » « less
- 
            Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M⊙. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M⊙. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies.more » « less
- 
            ABSTRACT We study star formation-driven outflows in a z ∼ 0.02 starbursting disc galaxy, IRAS08339+6517, using spatially resolved measurements from the Keck Cosmic Web Imager (KCWI). We develop a new method incorporating a multistep process to determine whether an outflow should be fit in each spaxel, and then subsequently decompose the emission line into multiple components. We detect outflows ranging in velocity, vout, from 100 to 600 km s−1 across a range of star formation rate surface densities, ΣSFR, from ∼0.01 to 10 M⊙ yr−1 kpc−2 in resolution elements of a few hundred parsec. Outflows are detected in ∼100 per cent of all spaxels within the half-light radius, and ∼70 per cent within r90, suggestive of a high covering fraction for this starbursting disc galaxy. Around 2/3 of the total outflowing mass originates from the star forming ring, which corresponds to $${\lt}10{{\ \rm per\ cent}}$$ of the total area of the galaxy. We find that the relationship between vout and the ΣSFR, as well as between the mass loading factor, η, and the ΣSFR, are consistent with trends expected from energy-driven feedback models. We study the resolution effects on this relationship and find stronger correlations above a re-binned size-scale of ∼500 pc. Conversely, we do not find statistically significant consistency with the prediction from momentum-driven winds.more » « less
- 
            Abstract We present new observations of the central 1 kpc of the M82 starburst obtained with the James Webb Space Telescope near-infrared camera instrument at a resolutionθ∼ 0.″05–0.″1 (∼1–2 pc). The data comprises images in three mostly continuum filters (F140M, F250M, and F360M), and filters that contain [Feii] (F164N), H2v= 1 → 0 (F212N), and the 3.3μm polycyclic aromatic hydrocarbon (PAH) feature (F335M). We find prominent plumes of PAH emission extending outward from the central starburst region, together with a network of complex filamentary substructures and edge-brightened bubble-like features. The structure of the PAH emission closely resembles that of the ionized gas, as revealed in Paschenαand free–free radio emission. We discuss the origin of the structure, and suggest the PAHs are embedded in a combination of neutral, molecular, and photoionized gas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
